
Diffusion of a ring polymer in good solution via the Brownian dynamics with no bond crossing

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 145004

(http://iopscience.iop.org/1751-8121/41/14/145004)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 03/06/2010 at 06:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/14
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 145004 (11pp) doi:10.1088/1751-8113/41/14/145004

Diffusion of a ring polymer in good solution via the
Brownian dynamics with no bond crossing

Naoko Kanaeda and Tetsuo Deguchi

Department of Physics, Ochanomizu University, Tokyo 112-8610, Japan

E-mail: kanaeda@degway.phys.ocha.ac.jp and deguchi@phys.ocha.ac.jp

Received 4 December 2007, in final form 28 February 2008
Published 26 March 2008
Online at stacks.iop.org/JPhysA/41/145004

Abstract
Diffusion constants DR and DL of ring and linear polymers of the same
molecular weight in a good solvent, respectively, have been evaluated through
the Brownian dynamics with hydrodynamic interaction in which no bond
crossing is possible. The ratio C = DR/DL, which should be universal in the
context of the renormalization group, has been estimated as C = 1.14 ± 0.01
for the large-N limit. It should be consistent with that of synthetic polymers,
while it is smaller than that of DNAs such as C ≈ 1.3. We also perform the
same simulation through Brownian dynamics with hydrodynamic interaction
where bond crossings are possible, and obtain almost the same estimate for the
ratio C.

PACS numbers: 83.10.Mj, 83.10.Rs, 82.35.Lr, 66.10.Cb, 87.14.Gg, 02.10.Kn

1. Introduction

Recently, there has been much progress in experimental techniques associated with ring
polymers. Ring polymers of large molecular weights are synthesized not only quite effectively
[1] but also with small dispersions and high purity [2, 3]. Diffusion constants of linear,
relaxed circular and supercoiled DNAs have been measured quite accurately [4]. Furthermore,
hydrodynamic radius of circular DNA has also been measured [5]. The developments are quite
remarkable. In fact, it used to be considered quite difficult to synthesize ring polymers of large
molecular weights. It has now become quite interesting to evaluate numerically dynamical or
conformational quantities of linear and ring polymers that can be measured in experiments.

It should be nontrivial how linear and ring polymers with the same molecular weight in
solution may have different dynamical or conformational properties. In fact, the excluded
volume effect should play a more significant role for ring polymers than for linear polymers,
since the average distance among monomers is smaller due to the constraint of closing two
ends [6]. Moreover, in a dilute solution, the topology of a given ring polymer is conserved
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under thermal fluctuations [7] and represented by a knot. Topological constraints may lead to
nontrivial statistical mechanical or dynamical properties of ring polymers [8–17].

In this paper we discuss diffusion constants DR and DL of ring and linear polymers in
good solution, respectively, via the Brownian dynamics with hydrodynamic interaction in
which bond crossings are effectively prohibited. Here the ring and linear polymers have the
same molecular weight, and we calculate diffusion constants for several different values of
the number of segments, N, for 5 < N < 50. We then calculate the ratio C = DR/DL

and compare it with the values measured in some experiments and other theoretical values.
This gives a test for the validity of dynamical models of ring and linear polymers. In fact, it
is suggested from the renormalization group argument that the large-N limit of C should be
universal among some class of polymer models. Hereafter we call the Brownian dynamics
with no bond crossings dynamics A.

Furthermore, we also perform the Brownian dynamics with hydrodynamic interaction
under almost the same molecular potentials as dynamics A except the parameters of the finite
extensible nonlinear elongational (FENE) potential which determine the maximal distance
between neighboring monomers. We set the maximal distance larger so that bond crossings
are allowed. We call it dynamics B. Dynamics B has precisely the same potential parameters
as that of [18]. We have found that bond crossings occurred for dynamics B, checking the
topology of the ring polymer by calculating some knot invariants at every time step of the
Brownian dynamics.

Simulation results of both dynamics A and B should be important. In fact, there have
been several simulation results obtained and accumulated for dynamics B [18, 19]. We may
compare the present simulation with previous ones. In this sense, dynamics B is a standard
algorithm in the Brownian dynamics. Furthermore, dynamics A is important since it preserves
the initial topology of a ring polymer.

The present study should be useful for making explicit connections between experimental
and theoretical results of dilute solutions of ring polymers. In fact, for dilute ring-polymer
solutions, even some fundamental properties such as the effects of topological constraints have
not been clearly confirmed in experiments, yet. Through simulations, we can study the effects
of topological constraints, which can be checked in experiments.

The content of the paper consists of the following. In section 2, we briefly explain the
simulation method. In section 3, we discuss two simulation results. In section 3.1, the ratio
of the mean-square radii of gyration of ring and linear polymers, g, are evaluated numerically.
The value of g for dynamics B is consistent with the lattice simulation result, while that of
dynamics A is larger than the standard one. We confirm it also by the Monte Carlo simulation.
It should thus be an interesting future problem to evaluate the ratio g for larger values of N. In
section 3.2, we discuss the ratio C both for dynamics A and B. We find that the estimates of C
are given by almost the same value both for dynamics A and B. Interestingly, the estimate of C
is consistent with a theoretical value given by a perturbation theory, while it is different from
that of the renormalization group calculation in one-loop order. However, we should note that
a one-loop order evaluation could give only a rough estimate and multi-loop corrections could
improve it.

2. Simulation method

The ring-polymer molecule is modeled as a cyclic bead-and-spring chain with N beads
connected by N FENE springs with the following force law:

F (r) = −Hr
/(

1 − r2
/
r2

max

)
, (1)

2
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where r = |r|. Let us denote by b the unit of distance. Here we assume that the average
distance between neighboring monomers is approximately given by b. We set constants H
and rmax as follows: H = 30kBT /b2 and rmax = 1.3b for dynamics A, and H = 3kBT /b2

and rmax = 10b for dynamics B. We assume the Lennard–Jones (LJ) potential acting among
monomers as follows:

V (r) = 4εLJ

[(
σLJ

rij

)12

−
(

σLJ

rij

)6
]

. (2)

Here rij is the distance of beads i and j , and εLJ and σLJ denote the minimum energy and the
zero-energy distance, respectively [19]. We set the Lennard–Jones parameters as σLJ = 0.8b

and εLJ = 0.1kBT so that they give good solvent conditions [18]. Here kB denotes the
Boltzmann constant.

We employ the predictor–corrector version [20] of the Ermak–McCammon algorithm [21]
for generating the time evolution of a ring polymer in solution. The details are given in appendix
A. The hydrodynamic interaction is taken into account through the Ronte–Prager–Yamakawa
tensor [22, 23] where the bead friction is given by ζ = 6πηsa with the bead radius a = 0.257b

and a dimensionless hydrodynamic interaction parameter h∗ = (ζ/6πηs)
√

H/πkBT = 0.25.
In the present simulation, physical quantities are given in dimensionless units such as

in [19]. We divide length by b, energy by kBT and time by ζb2/kBT . Let us indicate
dimensionless quantities by an asterisk as superscript. We have H ∗ = 30, r∗

max = 1.3 for
dynamics A, and H ∗ = 3, r∗

max = 10 for dynamics B. We take the simulation time step
�t∗ = 10−4.

When we evaluate the mean-square radius of gyration and the diffusion constant for
ring and linear polymers through the Brownian dynamics with hydrodynamic interaction, we
keep each run long enough so that the diffusion constant approaches its equilibrium value.
For instance, in the case of linear polymers of N = 45 of dynamics A, we have performed
9.4×105 time steps for each run. After the average value of the diffusion constant approaches
some equilibrium value, we start sampling the data and pick up one conformation out of every
18 800 time steps. Then, the diffusion constant evaluated at 740 000th time step is given by
9.256 × 10−2, while that at 940 000th time step is given by 9.276 × 10−2. The difference
0.020 × 10−2 is smaller than their probable error 0.068 × 10−2.

3. Simulation results

3.1. Ratio of the mean-square radii of gyration

The mean-square radius of gyration
〈
R2

G

〉
of a polymer consisting of N monomers is defined

by

〈
R2

G

〉 = 1

N

N∑
j=1

〈(�rj − �rG)2〉

where �rj denote the position vectors of monomers for j = 1, 2, . . . , N and �rG is the position
vector of the center of mass of the polymer. The symbol 〈A〉 denotes the ensemble average of
physical quantity A.

Let us discuss the estimates of the mean-square radius of gyration for ring and linear
polymers,

〈
R2

G

〉
R

and
〈
R2

G

〉
L

, respectively, obtained by dynamics A and B. They are plotted in
figure 1 against the number of segments N in the double logarithmic scales and are given in
table 1. It is clear that they are fitted well by straight lines. It seems that the N-dependence
is close to that of the asymptotic behavior, although the number of segments N are not very

3
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Figure 1. Mean-square radius of gyration 〈R2
G〉L and 〈R2

G〉R for dynamics A ( no bond crossing,
nbc) and B (allowed bond crossings, bc). For dynamics A, data points of linear polymers are shown
by (�), where ring polymers by (�), where AR = 0.043 ± 0.0001 and νR = 1.270 ± 0.001. For
dynamics B, linear polymers by (�), where AL = 0.175 ± 0.001 and νL = 1.204 ± 0.002; ring
polymers by (�), where AR = 0.105 ± 0.001 and νR = 1.179 ± 0.001.

Table 1. Dynamics A (no bond crossing): mean-square radii of gyration for linear and
ring polymers, 〈R2

G〉R and 〈R2
G〉L, and the g values. Applying the least-square method for

〈R2
G〉L = ALN2νL and 〈R2

G〉R = ARN2νR , respectively, the following estimates are obtained:
2νL = 1.288 ± 0.002, AL = 0.072 ± 0.001; 2νR = 1.270 ± 0.001, AR = 0.043 ± 0.001. In all
the tables, errors are given by probable errors.

N
〈
R2

G

〉
R

〈
R2

G

〉
L

g = 〈
R2

G

〉
R

/ 〈
R2

G

〉
L

6 0.413 ± 0.001 0.705 ± 0.003 0.586 ± 0.003
8 0.606 ± 0.001 1.046 ± 0.004 0.579 ± 0.003

11 0.916 ± 0.002 1.605 ± 0.007 0.571 ± 0.004
15 1.364 ± 0.002 2.404 ± 0.012 0.567 ± 0.004
20 1.961 ± 0.005 3.431 ± 0.018 0.571 ± 0.004
27 2.842 ± 0.008 5.082 ± 0.024 0.559 ± 0.004
36 4.028 ± 0.011 7.182 ± 0.037 0.561 ± 0.004
45 5.260 ± 0.016 9.335 ± 0.053 0.563 ± 0.005

large, yet. As we shall discuss later, it is probably due to the effect of the off-lattice molecular
potentials employed in the dynamics. Thus, as a fitting formula, we employ the large-N
asymptotic behavior of the mean-square radius of gyration,

〈
R2

G

〉 = AN2ν . The estimates of
the fitting parameters, AR and νR for ring polymers, and AL and νL for linear polymers, are
given in the caption of figure 1.

Let us now define the geometric shrinking factor g by [24]

g = 〈
R2

G

〉
R

/〈
R2

G

〉
L
. (3)

We assume that exponent ν should be the same for ring and linear chains, i.e. νR = νL. We
thus have the following fitting formula with three parameters:

g = g∞(1 + BgN
−�g ). (4)

Applying (4), we have g∞ = 0.559 ± 0.007 for dynamics A and g∞ = 0.535 ± 0.002 for
dynamics B, as shown in figure 2.

4
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Figure 2. The ratio g = 〈R2
G〉R/〈R2

G〉L versus N with the fitting curve (4). For dynamics A shown
by (�) (nbc), we have g∞ = 0.559 ± 0.007, Bg = 0.402 ± 0.438 and �g = 1.173 ± 0.706. Here
χ2 = 3.3 for eight data points. For dynamics B shown by (�) (bc), we have g∞ = 0.535 ±
0.002Bg = 0.204 ± 0.079 and �g = 0.565 ± 0.476. Here χ2 = 14.9 for eight data points.

The estimate of g value for dynamics B, g∞ = 0.535 ± 0.002, should be consistent with
the Monte Carlo simulation using the bond fluctuation model [25]. Interestingly, however, the
estimate of g∞ for dynamics A is larger than that of dynamics B even if we take into account
their errors. The enhancement of value g∞ in dynamics A should be due to the potential
forces. In fact, we have confirmed that almost the same value of g∞ is obtained by the Monte
Carlo simulation with the same molecular potentials as dynamics A. Therefore, we conclude
that it is due to the potential forces employed in dynamics A. Here, the potential function of
the Monte Carlo simulation of linear chains is given by the following:

−
N−1∑
i=1

0.5Hr2
max ln[1 − (ri,i+1/rmax)

2] + 4εLJ

N∑
i>j

[(σLJ/rij )
12 − (σLJ/rij )

6].

For ring chains, we add a term of rN,1 due to the periodicity.
Here we note that we have employed the symbol g∞ for the fitting parameter, expecting

that it should suggest the asymptotic value of g. However, in order to evaluate the true
asymptotic value of g, we have to perform simulations for larger values of N. It should thus
be an interesting future problem whether the enhancement of value g should be relevant to the
asymptotic value of g or not.

According to the one-loop renormalization group calculation [26] g is given by

g∞ = exp(13/96)/2 = 0.573. (5)

The value (5) is larger than the estimates, g∞ = 0.559 ± 0.007 for dynamics A and
g∞ = 0.535 ± 0.002 for dynamics B. Thus, the one-loop calculation does not explain the
estimate of g∞ for dynamics A or B. However, we should note that it is possible that the
one-loop RG result gives only a crude approximation, and higher-order calculation improves
the g value. Here we note that for the ε-expansion of the n-vector model, higher-order terms
have been calculated in order to evaluate universal quantities [27]. Thus, the multi-loop
corrections should be important, although the one-loop correction [26] is based on Fixman’s
cluster expansion [28] and it is not clear whether one can extend it.
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Figure 3. Diffusion constants of ring and linear polymers for dynamics A (nbc) depicted by (�)

and (�), respectively, for dynamics B (bc) (�) and (�), respectively. The horizontal axis denotes
the number of segments, N.

Through perturbation calculation, g was estimated in terms of the excluded-volume
parameter z as follows [29, 30]:

g = 1

2

[
1 +

(
π

2
− 134

105

)
z + · · ·

]
. (6)

The value of g is dependent on the excluded-volume parameter, z. In order to have g ≈ 0.53,
we have z ≈ 0.20. Here we note that the value z depends on the number of segments N.
In order to have z ≈ 0.20 we have to adjust many model parameters. Thus, it should be
practically impossible to give good estimates of g by making use of the perturbation theory.

3.2. Ratio of diffusion constants

Let us recall that the diffusion constant of a polymer is defined by the following:

D = lim
t→∞

1

6t
〈(�rG(t) − �rG(0))2〉. (7)

Here �rG(t) denote the position vector of the center of mass of the polymer. Making use of (7)
we have evaluated the diffusion constant of ring and linear polymers, DR and DL, respectively,
through dynamics A and B.

According to the Einstein relation, the diffusion constant of a polymer should be given
by D = kBT /ζ where ζ is given by ζ = 6πηRH with viscosity η and the hydrodynamic
radius RH . Let us assume that the hydrodynamic radius RH has the same asymptotic scaling
behavior with the square root of the mean-square radius of gyration,

√〈
R2

G

〉 ∝ Nν . Thus, in a
dilute solution, we have the following large-N behavior:

D = kBT

6πηRH

∝ N−ν . (8)

Taking the analogy of the large-N behavior (8), we introduce the following fitting formulae:
DR = A(DR)N−ν(DR) and DL = A(DL)N−ν(DL). Applying them to the data of table 2,
we have the estimates as shown in the caption of figure 3. The fitting curves are shown in
figure 3. The estimates of ν(DR) and ν(DL) are consistent with the expected N-dependence:
DR,DL ∝ N−ν with ν ≈ 0.59.

6
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Table 2. Dynamics B (allowed bond crossings): mean-square radii of gyration for linear and
ring polymers, 〈R2

G〉R and 〈R2
G〉L, and the g values. Applying the least-square method for

〈R2
G〉L = ALN2νL and 〈R2

G〉R = ARN2νR , respectively, the following estimates are obtained:
2νL = 1.204 ± 0.002, AL = 0.175 ± 0.001; 2νR = 1.179 ± 0.001, AR = 0.105 ± 0.001.

N
〈
R2

G

〉
R

〈
R2

G

〉
L

g = 〈
R2

G

〉
R

/ 〈
R2

G

〉
L

6 0.868 ± 0.002 1.505 ± 0.005 0.577 ± 0.003
8 1.221 ± 0.003 2.151 ± 0.008 0.568 ± 0.003

11 1.774 ± 0.004 3.149 ± 0.011 0.563 ± 0.003
15 2.550 ± 0.005 4.583 ± 0.016 0.556 ± 0.003
20 3.587 ± 0.008 6.404 ± 0.022 0.560 ± 0.003
27 5.172 ± 0.012 9.389 ± 0.037 0.551 ± 0.003
36 7.155 ± 0.017 12.821 ± 0.054 0.558 ± 0.004
45 9.306 ± 0.023 17.264 ± 0.070 0.539 ± 0.004

Table 3. Dynamics A (no bond crossing): diffusion constants of ring and linear polymers, DR

and DL, and the C values. Each estimate is derived from the average over more than 2000 runs.
We have A(DR) = 1.011 ± 0.012, ν(DR) = 0.601 ± 0.004; A(DL) = 0.938 ± 0.107, ν(DL) =
0.610 ± 0.004.

N DR DL C = DR/DL

6 0.404 ± 0.005 0.368 ± 0.005 1.099 ± 0.028
8 0.350 ± 0.004 0.308 ± 0.004 1.137 ± 0.029

11 0.284 ± 0.004 0.258 ± 0.003 1.098 ± 0.028
15 0.244 ± 0.003 0.218 ± 0.003 1.123 ± 0.028
20 0.199 ± 0.003 0.182 ± 0.002 1.095 ± 0.027
27 0.172 ± 0.002 0.152 ± 0.002 1.120 ± 0.028
36 0.142 ± 0.002 0.133 ± 0.002 1.071 ± 0.024
45 0.131 ± 0.002 0.120 ± 0.001 1.087 ± 0.026

Table 4. Dynamics B (allowed bond crossings): diffusion constants of ring and linear polymers,
DR and DL, and the C values. Each estimate is given by the average over more than 4000 runs.
We have A(DR) = 1.138 ± 0.022, ν(DR) = 0.575 ± 0.007; A(DL) = 1.138 ± 0.022, ν(DL) =
0.610 ± 0.004.

N DR DL C = DR/DL

6 0.341 ± 0.003 0.316 ± 0.002 1.078 ± 0.016
8 0.292 ± 0.002 0.265 ± 0.002 1.102 ± 0.016

11 0.236 ± 0.002 0.214 ± 0.002 1.104 ± 0.016
15 0.206 ± 0.001 0.180 ± 0.001 1.140 ± 0.016
20 0.166 ± 0.001 0.150 ± 0.001 1.109 ± 0.016
27 0.139 ± 0.001 0.127 ± 0.001 1.100 ± 0.017
36 0.117 ± 0.001 0.104 ± 0.001 1.122 ± 0.018
45 0.102 ± 0.001 0.093 ± 0.001 1.107 ± 0.017

Thus, formula (8) gives good fitting curves to the graphs of the diffusion constants DR

and DL versus N, and the estimates of the exponents ν(DR) and ν(DL) are at least roughly in
agreement with the SAW exponent νSAW = 0.588, although the large-N behavior (8) should
be valid only when N is asymptotically large enough. It is likely that N = 50 is not large
enough to investigate any asymptotic behavior of the diffusion constants.

It is clear from tables 3 and 4 that the estimates of C are almost the same for dynamics
A and B. Here, in figure 4, the C values are plotted against the number of segments N for

7
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Figure 4. Ratio C = DR/DL versus N. For dynamics A (�) with fitting curve (9), C∞ =
1.14 ± 0.01, BC = 0.094 ± 76.4 and �C = 2.98 ± 454.97. Here χ2 = 6.0 for eight data points.
For dynamics B (�), C∞ = 1.11 ± 0.01, BC = 161.8 ± 2010.3 and �C = 4.78 ± 6.94. Here
χ2 = 5 for eight data points.

dynamics A and B, respectively. We also observe that the estimates of C are independent of
the number of segments, N. In fact, it is also the case with the experimental results of DNAs
[4].

Let us assume again that exponent ν should be the same for the diffusion constants of ring
and linear chains, DR and DL, respectively. Applying the fitting formula

C = C∞(1 + BCN−�C ), (9)

we obtain the following estimate: C∞ = 1.14 ± 0.01 for dynamics A; C∞ = 1.11 ± 0.01 for
dynamics B. The fitting curves are shown in figure 4.

According to the one-loop renormalization group calculation in the presence of both
hydrodynamic and self-avoiding interactions [31, 32], a universal ratio C is given by

C∞ ≡ lim
N→∞

DR/DL = exp(3/8) = 1.454. (10)

The value (10) is much larger than the estimate of C = 1.14 ± 0.01 for dynamics A and
C = 1.11 ± 0.01 for dynamics B. As in the case of the g value, it is possible that the one-loop
order result gives only a crude result. Thus, higher-order RG corrections should be important.
Here we note that the one-loop calculation was performed through the conformation-space
renormalization-group approach [28], and it would be nontrivial to calculate higher-order
corrections.

In recent years, the ratio C has been estimated by the perturbative calculation in terms of
the excluded-volume parameter z [33],

C = DR/DL = 3π

8

(
1 + 1.827z

1 + 1.890z

)1/3

. (11)

The value of C is rather constant with respect to z. We have 1.178 at z = 0, and 1.165 at
z = ∞. It is interesting to note that the theoretical value (11) is rather close to the simulation
value, C = 1.14 ± 0.01. Thus, the perturbative calculation gives a theoretical value consistent
with the simulation result although the validity of the perturbation theory is not clear.

8
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Diffusion constants DR and DL have been measured in several experiments. We observe
a tendency that for synthetic polymers C is given by 1.1–1.2, while for linear and circular
DNAs it is roughly given by 1.3. For instance, it is estimated for relaxed circular DNAs as
C = 1.32 ± 0.014 [4]. For synthetic polymers through scattering experiments, C = 1.1–1.2
[34] and C = 1.07–1.15 [35]. Here we note that in [36] C is estimated as a little larger value
than in other synthetic polymer experiments.

We thus conclude that the present model of ring and linear polymers should be valid for
synthetic polymers, while for relaxed circular DNAs some additional potential energy might
be important.

4. Conclusion

In the present model of the Brownian dynamics both for dynamics A and B, the estimate
of C = DR/DL should be consistent with that of synthetic polymer experiments, while it
is smaller than that of DNA experiments. The difference in the ratio C between synthetic
polymers and DNAs may be due to some additional potential functions arising from the closed
DNA double strands.
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Appendix A. Algorithm of the Brownian dynamics

In this paper, we have simulated linear and ring polymers in a good solvent with hydrodynamic
interaction by the revised version of the Brownian dynamics [21] with respect to the first-order
predictor–corrector [20].

Let us explain the original version of the Brownian dynamics [21]. We consider N
Brownian particles in a solvent of temperature T with hydrodynamic interaction. The position
of the ith Brownian particle, �ri , at time t + �t is calculated by the following equation:

��ri = �ri(t + �t) − �ri(t) =
∑

j

∂Dij

∂�rj

+
∑

j

Dij
�Fj

kBT
+ �Ri(�t), (A.1)

for i, j = 1, 2, . . . , N . Here, Dij denote the diffusion tensor, �Fj the force acting on the j th
particle, which we shall specify shortly. �Ri(�t) denote random numbers obeying the Gaussian
distribution with 〈 �Ri(�t)〉 = 0 and 〈Riα(�t)Rjβ(�t)〉 = 2Dij δαβ�t .

We derive (A.1) as follows. First, we consider the Fokker–Planck equation of N Brownian
particles in a solvent

dW

dt
=

∑
i

∑
j

(
∂

∂�ri

Dij

∂W

∂�rj

− 1

kT
�FjW

)
, (A.2)

where W = W(�r1, . . . , �rN , t) is the distribution function for the configuration space of
the N particles. We can show that the distribution function is given by the multi-variable
Gaussian distribution if the initial configuration of the N Brownian particles is given by

9
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W
(�r0

1 , . . . , �r0
N, 0

) = ∏
i δ

(�ri − �r0
i

)
. Up to the first order of �t , the average value and the

variance–covariance of the Gaussian distribution, respectively, are given by the following:

〈��ri〉 =
∑

j

∂

∂�ri

Dij

(
∂W

∂�rj

− 1

kT
�FjW

)
, (A.3)

〈�riα�rjβ〉 = 2Dij δαβ�t. (A.4)

We thus obtain equation (A.1) from the conditions that the difference of the position vector
��ri = �ri(t + �t) − �ri(t) should satisfy the average value (A.3) and the variance–covariance
(A.4). Here we remark that we can obtain the same average value (A.3) and the variance–
covariance (A.4) by integrating the Langevin equations of N Brownian particles.

Let us now formulate the diffusion tensor and the force acting on the Brownian particles.
We employ the Ronte–Prager–Yamakawa tensor as the diffusion tensor [22, 23],

Dij = kT

6πζa
δij (for i = j) (A.5)

Dij = kT

8πζrij

[(
E +

�rij�rij

r2
ij

)
+

2a2

r2
ij

(
1

3
E − �rij�rij

r2
ij

)]
(for i �= j). (A.6)

Here a denotes the radius of a bead and ζ the hydrodynamic friction. For the force, we assume
the Lennard–Jones force and the FENE spring force. The Lennard–Jones potential is given by

VLJ = 4εLJ

((σLJ

r

)12
−

(σLJ

r

)6
)

, (A.7)

where r is the distance between two particles, σLJ is the zero-energy distance and εLJ is the
energy at distance σ . We give σLJ = 0.8b and εLJ = 0.1kBT for simulation in a good solvent.
The potential of the FENE spring force is given by

VFENE = −1

2
r2

maxH ln

[
1 −

(
r

rmax

)2
]

, (A.8)

where r is the distance between a pair of neighboring particles, H is the spring constant and
rmax is the maximal distance between neighboring particles. For dynamics B, we set H ∗ = 3.0
and r∗

max = 10.0, which are given in [19]. For dynamics A, we set H ∗ = 30.0 and r∗
max = 1.3,

as shown in [37]. In this model, no bond crossing should be possible due to the strong spring
constant and the small maximal distance between neighboring particles. Here we note that
dimensionless parameters and variables are obtained by dividing length, time and energy by
b, ζb2/kT and kT , respectively.

The first-order predictor–corrector version [20] of the Ermak and McCammon algorithm
[21] is given as follows. When initial positions of all particles �r0

i are given, we calculate the
positions at the next time step as follows. First, we calculate the diffusion tensor and the force,
i.e. D0

ij and �F 0
i , respectively, making use of (A.6)–(A.8). Second, we calculate the positions

of all particles, �r ′
i , by (A.1) with respect to D0

ij and �F 0
i . Third, using �r ′

i , we again calculate

the diffusion tensor and the force, and denote them by D′
ij and �F ′

i , respectively. Finally, we
calculate the position of the ith particle at the next time step as follows:

��ri = �ri(t + �t) − �r0
i (t) = �t

∑
j

1

2

(
∂

∂�r0
j

D0
ij +

∂

∂�r ′
j

D′
ij

)

+ �t
∑

j

1

2

(
D0

ij
�F 0

j + D′
ij

�F ′
j

)/
kBT + �Rj . (A.9)
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Here �Rj obeys the Gaussian distribution where the average value is zero and the variance–
covariance is given by the following:

〈RiαRjβ〉 = 2
[

1
2

(
D0

ij + D′
ij

)]
δαβ�t. (A.10)
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